Foreground Removal with Gaussian Process Regression

MWA Project Meeting -2023

Takumi Ito , Keitaro Takahashi(Kumamoto University), Shintaro Yoshiura(NAOJ)

What is the Epoch of Reionziation

Dark ages

 \rightarrow After the cosmic recombination, and there have been no luminous objects

Cosmic Dawn

 \rightarrow First luminous objects are formed.

Epoch of Reionization

https://astrobites.org/wp-content/uploads/2015/05/cover.png

\rightarrow ionizing photons from galaxies ionized the neutral hydrogen gas distributed in the Universe.

21 cm line

- The 21 cm line emission is due to the spin flip of HI →We can observe IGM at the EoR via 21cm line
- HI distribution at different redshifts can be observed by different frequencies

 \rightarrow We can follow the evolution of IGM

Foregrounds

- Observed signal -Foreground(FG) + 21cm line + Noise
- FG is brighter than EoR signal $(\sim 10^3 \text{ in order})$
- Avoidance or Removal of FG is important →How to remove foreground? \rightarrow Use difference between FG and EoR signal
 - -Emission strength(FG>>EoR signal) -Spectral behavior

Foreground Removal techniques

- There are various foreground removal techniques -Generalized Morphological Component Analysis (GMCA) -FAST ICA
 - -Principal Component Analysis (PCA)
 - -Gaussian Process Regression (GPR)
- Hothi et al 2020 reports that GPR has better performance than FastICA, GMCA

My research

- GPR uses covariance called kernel to represent data
 →Best kernels set maybe different for each telescope
 →Compare some of the kernels combination by Bayesian evidence
- Imaging might be affect to FG removal
 →Visibility based FG removal(LOFAR analysis is image based)
 - I applied Gaussian Process Regression based FG removal to MWA observational data

- Assuming each component to be statistically uncorrelated, the covariance of the data **K** is given by

• Our data consists of the foreground (\mathbf{f}_{fg}), EoR signal (\mathbf{f}_{21}) and noise (n)

$d = f_{fg} + f_{21} + n$

 $\mathbf{K} = \mathbf{K}_{\mathrm{fg}} + \mathbf{K}_{21} + \mathbf{K}_{\mathrm{noise}}$

• Gaussian Process(GP) \rightarrow Multivariate Gaussian Distribution, N

- If we assume random value f follows GP, we write $f \sim N(m,K)$
 - where *m* :mean, *K*: covariance(kernel)

- Assuming the data **d** is Gaussian distributed, we can model its probability distribution as $\mathbf{d} \sim N(m(\nu), \mathbf{K}(\nu, \nu))$
- We can write joint probability distribution of the GP at a series of other points in space ν' as $\begin{bmatrix} d \\ d' \end{bmatrix} \sim N\left(\begin{bmatrix} m(\nu) \\ m(\nu') \end{bmatrix}, \begin{bmatrix} K(\nu, \nu) & K(\nu, \nu') \\ K(\nu', \nu) & K(\nu', \nu') \end{bmatrix} \right)$

• for the case of foreground removal, we want to estimate

- foreground model \mathbf{f}_{fg} $\begin{bmatrix} \mathbf{d} \\ \mathbf{f}_{fg} \end{bmatrix} \sim \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{fg} + K_{21} + K_n & K_{fg} \\ K_{fg} & K_{fg} \end{bmatrix} \right)$ $E[\mathbf{f}_{fg}] = K_{fg}[K_{fg} + K_{21} + K_n]^{-1}\mathbf{d}$
 - $\text{Cov}(\mathbf{f}_{fg}) = K_{fg} K_{fg}[K_{fg} + K_{21} + K_n]^{-1}K_{fg}$
- To remove FG, subtract expected value of FG $\mathbf{E}[\mathbf{f}_{fg}]$ from the data Residual = $\mathbf{d} - E[\mathbf{f}_{fg}]$

Covariance (Kernel)

- Matern kernel is widely used kernels in GPR $K_{\text{Matern}}(\nu,\nu') = \sigma^2 \frac{2^{1-\eta}}{\Gamma(n)} \left(\sqrt{2\eta} \frac{|\nu-\nu'|}{l} \right)^{\eta} K_{\eta} \left(\sqrt{2\eta} \frac{|\nu-\nu'|}{l} \right)^{(\times 10^{-1})}$
- Γ :gamma function, K_n :modified Bessel function of the second kind,
- σ^2 :Variance(amplitude of the signal) *l*:Length scale(topical scale of correlations in the data across frequency) η :spectral parameter(It determines the overall "smoothness" of the data)

σ^2 and l of Matern kernel

• Larger σ^2 (Variance) →The signal is stronger.

• Larger *l* (coherence scale) →The signal is more correlated in frequency

randomly generated data plots with Matern kernels, with shown parameters

η of Matern kernel

• Larger η → data is spectrally smoother

• FG is spectrally smoother!

Components

Smooth FG

- Covariance of 21cm line \rightarrow Well approximated by $\eta = 1/2$
- We don't know what are the best FG kernels for MWA!
 - →Compare some kernels sets using Bayesian evidence

0.8

0.6

0.4

0.2

0.0

0.0

0.5

1.0

1.5

 $\Delta \nu \,[{
m MHz}]$

2.0

Applied kernel and its parameter priors

non-smooth FG

Smooth FG

10 < l < 100[MHz] 1 < l < 10[MHz]

• Apply GPR to the data with each kernel set, and compare its evidence -MWA Observational data (high band observation in 2015 (2h@EoR0))

Additional component

0.64 < l < 1.92[MHz] 0.1 < l < 1.2[MHz] $10^{-6} < \sigma^2 < 0.5 [Jy^2]$

Result 1 ~ Best kernel for MWA~

- Compare Bayesian Evidence of different kernel sets
- $\Delta evidence = \log Z_{model} \log Z_{fiducial}$
 - | Δ evidence | > 10:
 - →Strong difference
 - -Higher Δ evidence
 - → Better model
- Chosen kernels are depend on the value of K_{\perp}

Signal loss

 Additional component has similar coherence scale to HI kernel → Subtracting additional component may cause signal loss

→ Apply GPR based FG removal method to generated data and recover HI power spectrum

Generate Multivariate Gaussian Distribution with K as signal component

Results 3 ~signal loss~

Combine these signals together as simulated signal
 →GPR based FG removal

K_{HI}

Results 3~Signal loss~

• HI power spectrum VS Residual

If GPR work well

 Ideal parameters are chosen
 Signals are completely
 represented by kernel
 →No signal loss even if we subtract
 additional component

Conclusion

• I applied GPR based FG removal to MWA observational data(2h in 2015) →Kernel set with Additional power kernel has better Bayesian evidence →Residual is smaller than observed data - ~ $10^2 [Jy^2]$ (additional component included) 10³ 10² - ~ $10^3 [Jy^2]$ (additional component subtracted) 10¹

Maybe no signal loss even if we subtract additional component

