

Radio Lobes of M87 in the view of MWA (and VLA)

Linhui Wu

Chinese SKA Radio Cosmology group, Shanghai Astronomical Observatory (SHAO), CN

Collaborators: F. G. Xie, Q. Guo, Q. Zheng, H. Y. Shan, D. Hu, S. Duchesne, J. Y.Wang, J. H. Gu, Q. W. Wu, Z. H. Zhu, N. Seymour, C. Riseley, M. Johnston-Hollitt et al

2023-07-25

Main idea

Content

- Background
- Basic information and previous study of M87
- > My results on the the diffuse radio emission in M87
- Conclusions

Background: Lobes and Bubbles

Two mode feedback in galaxy

Star-forming (disk) galaxies Early type

typical energy of 10^{51} erg per SN starburst wind of typical speed of 1000 km/s

Massive elliptical galaxies Old type

- SHAO

BH accretion in AGN

Mechanisms in individual galaxies

• **PG 0007+106 (quassar, high accretion)** Stratified radio outflow ("AGN jet + wind" or "spine + sheath" structure)

(Kharb & Silpa 2023)

• Mrk 6 (seyfert, high accretion)

Episodically powered precessing jet (dominated) and starburst (second) (Kharb et al. 2006)

- our galaxy (low accretion)
 Galactic winds from the Galactic Center (Crocker & Aharonian 2011)
 AGN Jet (Guo & Mathews 2012; Guo+ 2012; Guo 2017)
 as well as outflow model (AGN jet + wind)
- Radio galaxy (low accretion) dominated by jet while it can interact with wind and/or ISM (Bowman et al. 1996; Silpa et al. 2022; Kharb & Silpa 2023)

Recent simulation

Momentum flux: wind > jet **Power: wind ~ 1/10 jet** (Yuan et al. 2015; Yang, FY et al 2021)

Mechanisms in individual galaxies

- PG 0007+106 (quassar, high accretion) stratified radio outflow ("AGN jet + wind" or "spine + sheath" structure) (Kharb & Silpa 2023) • Mrk 6 (seyfert, high accretion) episodically powered precessing jet (dominated) and starburst (second) (Kharb et al. 2006) • our galaxy (low accretion) Galactic winds from the Galactic Center (Crocker & Aharonian 2011) AGN Jet (Guo & Mathews 2012; Guo+ 2012; Guo 2017) as well as outflow model (AGN jet + wind) Radio galaxy (low accretion)
- dominated by jet COMIE f car ber than Aboos jet? (Bowman et al. 1996; Silpa et al. 2022; Kharb & Silpa 2023)

Recent simulation

Momentum flux: wind > jet

Power: wind ~ 1/10 jet

(Yuan et al. 2015; Yang, FY et al 2021)

M87 is nearest radio galaxy which is very bright, idea source !

Basic information of M87

Bright structures (40 kpc lobes)

minimum pressure: Pj $\sim {\rm few} \times 10^{44} {\rm erg s}^{-1}$

equipartition + synchrotron age assumed particle content

 $P_{\rm j} \sim 6 - 10 \times 10^{44} {\rm erg s}^{-1}$

(Owen et al. 2000; , de Gasperin et al. 2012)

Minimum energy (5 kpc
$$P_{\rm H} \rightarrow 0.2 \times 10^{44} {\rm orgs}^{-1}$$

 $P_{\rm j,min} \sim 0.2 \times 10^{44} \rm erg s^{-1}$

Bondi accretion $M_B \sim 0.01 - 0.2 M_{\odot}$ /yr Pout ~ 0.5 - 11 × 10⁴⁴ erg/s

SED fitting (HST-1)

 $\mathrm{Pj}\sim 10^{43-44}\mathrm{ergs}^{-1}$

Accretion near SMBH $(0.2-2) \times 10^{-3} M_{\odot}/yr$

(Reynolds et al. 1996; Pasetto et al. 2021; Stawarz et al. 2006; Churazov et al. 2001; Di Matteo et al. 2003; EHT Collaboration et al. 2021; Kuo et al. 2014; Feng et al. 2016)

Previous study on M87

> Large Scale bright structures

observation & simulation jet dominated (e.g., Owen et al. 2000; de Gasperin et al. 2012; Churazov et al. 2001)

Small Scale near SMBH

simulation for low luminous source Momentum flux: wind > jet; **Power: wind ~ 1/10 jet** (Yuan et al. 2015; Yang, FY et al 2021) simulation for M87 (MAD)

Wind can explain the RM screen distribution of M87 (Yuan et al. 2022)

Observation of M87

edge-brightened and wider emission profile

wind associated with the accretion flow and couple with jet (Lu et al 2023, Nature)

Previous study on M87

Large Scale bright structures

observation & simulation jet dominated (e.g., Owen et al. 2000; de Gasperin et al. 2012; Churazov et al. 2001)

Small Scale near SMBH

simulation for low luminous source Momentum flux: wind > jet; **Power: wind ~ 1/10 jet** (Yuan et al. 2015; Yang, FY et al 2021) simulation for M87 (MAD)

Wind can explain the RM screen distribution of M87 (Yuan et al. 2022)

Observation of M87

edge-brightened and wider emission profile

wind associated with the accretion flow and couple with jet (Lu et al 2023, Nature)

Wind should play certain roles! We also consider galactic wind .

Results

MWA 185/216 MHz bandwidth: 30 MHz

 Mean intensity in diffuse lobe region
 OPE
 OPE<

VLA 1.5/2.5 GHz bandwidth: 1 GHz

Filamentrary structures in lobes

Turbulence

Spectral index

ASHAO A

> Core:~0.6; lobes: mean ~ -1.2, mostly in the range from -0.9~ -1.4

Equipartition analysis

> B_{eq} in lobes ~10 uG, P_{\min} at lobe edge ~ 10^{-11} dyn/cm^2

Spectral analysis

- SHAO

CI/JP model

Energetics and Power from Radio

Total energy:

- I. $\gamma = 4/3$, $E_{\min} = 4P_{\min}V \simeq 7.8 \times 10^{58} \text{erg}$
- II. $\gamma \in$ (4/3, 5/3), $E_{
 m cav} = \gamma/(\gamma-1) P_{
 m th} V$ = (2.4 ~ 3.8)x 10^{59} erg

Total radio luminosity (~ 1% of the total power):

For diffuse region: $L_{l,rad} \simeq 2.8 \times 10^{41} erg/s$

Whole region: $L_{t,rad} = 2.8 \times 2.8^{41}$ erg/s

Kenetic power from P_{kin} - L_{151} relation (Fan et al. 2018; Godfrey & Shabala 2013):

For diffuse region: $L_{i,kin} = 1.1 \times 2.8^{44}$ erg/s For whole region: $L_{i,kin} = 1.6 \times 2.8^{44}$ erg/s

Dynamic time

Sound crossing time:

$$t_s = D_{\rm L}/c_s = D_{\rm L}\sqrt{\mu m_{\rm H}/\gamma kT}, \ c_s \equiv (P/\rho)^{1/2} = (\gamma kT/\mu m_{\rm H})^{1/2}$$

Set $D_L \sim 40$ kpc, derive $t_s \sim 50~{\rm Myr}$

Excavation time of the lobes:

$$t_{\rm exc} = \frac{\gamma}{\gamma - 1} \frac{E_{\rm min;cav}}{P_{\rm out}}$$

 $\gamma = 4/3, P_{\rm min}, t_{\rm exc} \sim 25/P_{44} \text{ Myr}$
 $\gamma \in (4/3, 5/3), P_{\rm th}, t_{\rm exc} \sim (76 - 124)/P_{44} \text{ Myr}$

Consistent with each other:

Then, for diffuse region: if P_{\min} , $P_{out} = 1.1 \times 10^{44}$ erg/s if P_{th} , $P_{out} = (1.5 \sim 2.5) \times 10^{44}$ erg/s

> Power in the diffuse region: $(0.5 \sim 2.5) \times 10^{44}$ erg/s

 Θ cu

Stellar feedback? (Condon et al. 2002; Condon 1992)

In case of E_{cav} , SFR(M $\ge 0.1 M_{\odot}$) ~ 600 - 1000 M_{\odot} /yr In case of E_{min} , SFR(M $\ge 0.1 M_{\odot}$) ~ 200 M_{\odot} /yr

While upper SFR ~0.081 $M_{\odot}/{\rm yr}\,$ from far-infrared data of M87

X

Stellar feedback? (Condon et al. 2002; Condon 1992)

In case of E_{cav} , SFR(M $\ge 0.1 M_{\odot}$) ~ 600 – 1000 M_{\odot} /yr In case of E_{min} , SFR(M $\ge 0.1 M_{\odot}$) ~ 200 M_{\odot} /yr

While upper SFR ~0.081 $M_{\odot}/{\rm yr}\,$ from far-infrared data of M87

AGN feedback?

AGN Jet

Jet power: $P_j \sim 10^{43 \sim 44}$ erg/s

Stellar feedback? (Condon et al. 2002; Condon 1992)

In case of E_{cav} , SFR(M $\ge 0.1 M_{\odot}$) ~ 600 – 1000 M_{\odot} /yr In case of E_{min} , SFR(M $\ge 0.1 M_{\odot}$) ~ 200 M_{\odot} /yr

While upper SFR ~0.081 $M_{\odot}/{\rm yr}\,$ from far-infrared data of M87

AGN feedback?

AGN Jet

Absolutely

X

Jet power: $P_j \sim 10^{43 \sim 44}$ erg/s

Stellar feedback? (Condon et al. 2002; Condon 1992)

In case of E_{cav} , SFR(M $\ge 0.1 M_{\odot}$) ~ 600 – 1000 M_{\odot} /yr In case of E_{min} , SFR(M $\ge 0.1 M_{\odot}$) ~ 200 M_{\odot} /yr

While upper SFR ~0.081 $M_{\odot}/{\rm yr}\,$ from far-infrared data of M87

AGN feedback?

AGN Jet

primary, dorminant

X

Jet power: $P_i \sim 10^{43 \sim 44}$ erg/s

AGN wind (Yuan et al. 2018; Yoon et al. 2018)

 $\dot{M}_{\rm tr} - P_j$ relation: $\dot{M}_{\rm tr} \simeq 2 \times 10^{-3} (\frac{P_{\rm W}}{10^{43} {\rm erg/s}})^{1/3} \dot{M}_{\rm Edd}$ With bondi accretion $\dot{m}_{\rm B} \equiv \frac{M_{\rm B}}{\dot{M}_{\rm Edd}} \simeq (0.7 - 14) \times 10^{-4}$

 $P_{\rm W} \simeq (5 \times 10^{38} - 4 \times 10^{42}) \, {\rm erg/s}$

Lower than the power in the diffuse region !

Stellar feedback? (Condon et al. 2002; Condon 1992)

In case of E_{cav} , SFR(M $\ge 0.1 M_{\odot}$) ~ 600 – 1000 M_{\odot} /yr In case of E_{min} , SFR(M $\ge 0.1 M_{\odot}$) ~ 200 M_{\odot} /yr

While upper SFR ~0.081 $M_{\odot}/{\rm yr}\,$ from far-infrared data of M87

AGN feedback?

AGN Jet

Jet power: $P_j \sim 10^{43 \sim 44}$ erg/s

AGN wind (Yuan et al. 2018; Yoon et al. 2018)

secondary

X

primary, dorminant

$$\dot{M}_{\rm tr} - P_j$$
 relation: $\dot{M}_{\rm tr} \simeq 2 \times 10^{-3} (\frac{P_{\rm W}}{10^{43} {\rm erg/s}})^{1/3} \dot{M}_{\rm Edd}$

With 1/10 power in the diffuse region

$$\dot{M}_{\rm tr} \simeq (2.8 - 4.3) \times 10^{-3} \ \dot{M}_{\rm Edd}$$

A little higher than present bondi accretion rate !

Conclusions

Thank You!

Background

Data processing

EVLA

MWA pipeline: 1GC, 2GC, 3GC

THE FERMI HAZE: A GAMMA-RAY COUNTERPART TO THE MICROWAVE HAZE

GREGORY DOBLER^{1,2}, DOUGLAS P. FINKBEINER^{1,3}, ILIAS CHOLIS⁴, TRACY SLATYER^{1,3}, AND NEAL WEINER⁴ ¹ Irstitute for Theory and Computation, Harvard-Smithsorian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, MA 02138, USA; dobler@kitp.acsb.eda ² Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106, USA ³ Physics Department, Harvard University, Cambridge, MA 02138, USA ⁴ Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA *Received 2009 October 26; accepted 2019 April 26; published 2010 June 18*