

Evidence of Ultra-faint RFI in Deep 21-cm Power Spectra

Dr. Mike Wilensky University of Manchester michael.wilensky@manchester.ac.uk

- •Why RFI is a problem in 21-cm power spectrum estimation
- •Basic study design of 2014 Highband Data
- •Data analysis (RFI statistics, power spectrum jackknife tests)
- Deepest integration/power spectrum upper limit

Talk Outline

Why RFI is a problem pt. 1

- •The 21-cm signal is very faint
- •We are using the frequency axis as a "line-of-sight" distance axis
- the signal
- •RFI has spectral structure

•Contaminants with significant spectral structure are hard to separate from

Source: https://arxiv.org/abs/1109.6012

Why RFI is a problem pt. 2

- •Depending on the wave mode and type of RFI, the EoR PS signal is (probably) about as bright as that of a ~10 mJy RFI source
- •But how much RFI is in our deep integrations? No groups have a great quantitative handle on this, but also no one sees systematics that are obviously associated with RFI.

- •Take a fairly large data set (1 season; 2014 EoR highband data)
- •Separate data by RFI content (as seen by SSINS)
- •See if we can find stuff in the power spectra of different subsets at different integration depths
- •Make a power spectrum upper limit (any effect?)

Basic Study Design

RFI Content

0.6 occupancy fraction after extension

- RFI flagged using SSINS (finds fainter things than AOFlagger, did not use AOFlagger flags)
- •RFI tends to appear in "runs" (it clusters in time; physically expected)

Seems to be worse in Western Pointings, pt. 1

Seems to be worse in Western Pointings

The University of Manchester

More Western pointings further to the right in "Absolved" observations

- Also somewhat true of the "pure" observations, but really only at high significance
- Difference indicates that the systematic is worse in the absolved than the pure

PS Footprint is Enhanced when we turn off flags

The University of Manchester

- •Brighter RFI events in the SSINS don't necessarily correlate with worse contamination in the integrated power spectra
- Different RFI types don't seem to correlate with different PS shapes (counter) to theoretical expectation)
- •There seems to be an optimal integration depth of \sim half an hour suspect this is due to subsets of this size having fewer nights involved

Some puzzles from the jackknives

- not calculate a metric (RTS fail)
- seen in jackknife tests
- obviously show the RFI footprint

Making a limit

Cut any observation with sub-excellent ionosphere or for which we could

Cut all absolved observations since there is probably residual RFI in them as

•Cut a few additional small subsets of "pure" observations that seemed to

Wall of Shame (119 Obs)

Some Deep PS

Final Limits

- •Not our deepest limit (in fact high by a factor of a few)
- However almost every bin between the coarse band harmonics is noise limited

- •Residual RFI exists despite significant improvements in RFI flagging
- •Seems to correlate with pointing, and is more noticeable at shallow integration depths
- Exhaustive RFI cutting based on PS metrics seems to clean up regions of spherical PS b/w coarse band harmonics
- Potential threat of extremely faint RFI and nontrivial integration behavior suggests we should attack this problem harder to better understand the actual risks

Conclusion