The SMART pulsar survey: Past, present, & future

Bradley Meyers (on behalf of the SMART team)

MWA Project Meeting 25-28 July 2023

How it all began Motivation and the inception of a MWA pulsar survey.

An idea is born...

By 2017 we had moved to a stage where **high time resolution processing** was becoming **more tractable** with the Voltage Capture System (VCS)

- Offline software coherent beamformer
 - + MWA now included in common pulsar processing packages
- Tools and utilities to make managing processing easier (VCSTools)
- Local group knowledge and understanding
 - R. Bhat, S. Ord, S. Tremblay, F. Kirsten, G. Sleap, S. McSweeney, B. Meyers, M. Xue, N. Swainston...

MWA Phase II introduced "compact configuration" making the concept of tesselating the entire southern sky feasible - still *very* daunting!

An MWA pulsar survey

With the **wide field of view** from the tile design, **"fat" tied-array beams** from MWA Phase II Compact tile layouts, and a **multi-pixel beamformer** on the way, it all seemed possible!

And so, the Southern-sky MWA Rapid Two-metre pulsar survey was conceived

- Only need <100 observations total (still a large ask given VCS data rates)
- *Better sensitivity* than previous Southern pulsar surveys at similar frequencies
- If all VCS observations can be stored, constitutes a *voltage record of the sky*
- Provides a *reference for SKA-Low* predictions and verification

An MWA pulsar survey

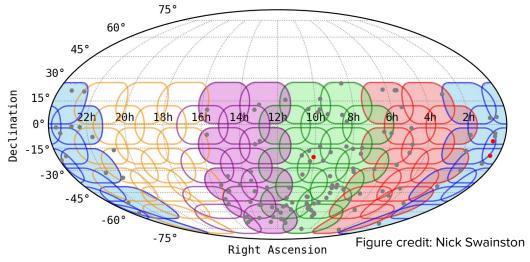
With the **wide field of view** from the tile design, **"fat" tied-array beams** from MWA Phase II Compact tile layouts, and a **multi-pixel beamformer** on the way, it all seemed possible!

And so, the Southern-sky MWA Rapid Two-metre pulsar survey was conceived

- Only need <100 observations total (still a large ask given VCS data rates)
- *Better sensitivity* than previous Southern pulsar surveys at similar frequencies
- If all VCS observations can be stored, constitutes a *voltage record of the sky*
- Provides a *reference for SKA-Low* predictions and verification

SMRT... I mean, SMART!

Southern-sky MWA Rapid Two-meter pulsar survey

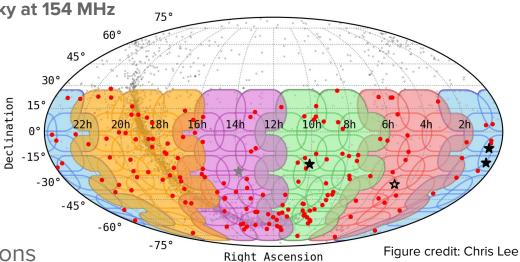


Current status What we are doing right now.

How much data have we collected?

As of previous Project Meeting

- Collected 75% of observations needed to cover the visible sky
 - Dec range: +30 deg to SCP
 - RA range: <16hr and >21hr
 - Remaining observations will cover the Galactic Plane and Centre
 - Very interesting region, but also very difficult for low-frequencies!


- 51 VCS observations = 2.15 PB of data
 - Observed between September 2018 and May 2021

How much data have we collected?

• Collected 75% of observations needed to cover the visible sky

• A voltage record of the Southern sky at 154 MHz

- **3.6 PB** of voltage data
 - +10 TB of calibration observations
 (before & after each VCS obs.)

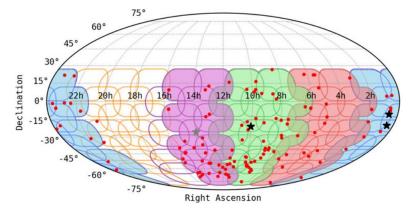
As of now

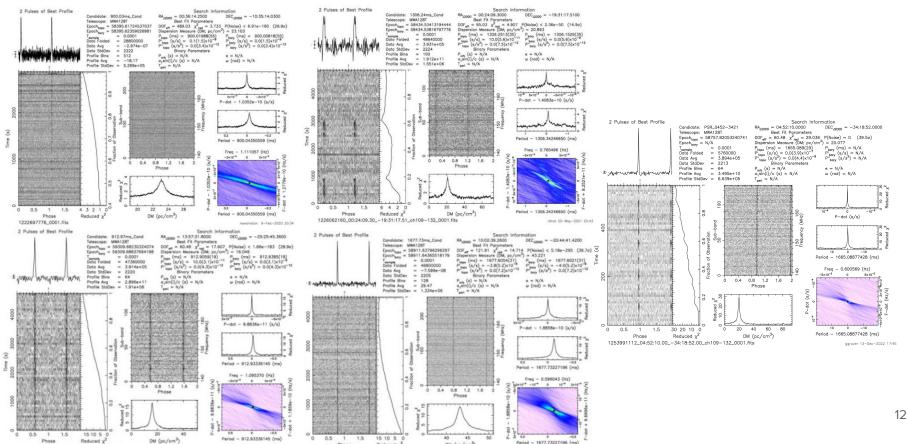
- **51 Legacy + 19 MWAX** observations
 - Legacy: observed between September 2018 and May 2021
 - MWAX: observed between January and July 2023

How much data have we processed?

- We have successfully conducted a *proof-of-concept "first-pass" survey*
 - Only analysed the first 10 minutes of each observation
 - No RFI mitigation (beyond forming tied-array beams)
 - Used a very coarse dedispersion plan (2500 trials)
 - Did only a **basic periodicity search** across each time series' power spectrum

- Processed 80% of the Legacy observations
 - Corresponds to only 8% of total data volume
 - Only a small fraction of the produced candidates have been inspected! (<10% of the 8%...)
 - Still found a handful of new pulsars...



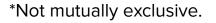

Fig. 1 in Bhat et al. 2023b

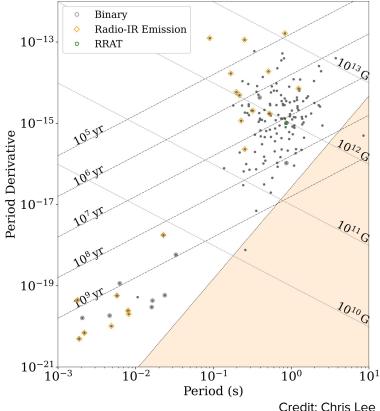
Pulsars we have discovered

- Discovered:
 - **J0036-1033**; typical, but has a steep spectral index and low-luminosity
 - J1002-2044; typical, slightly steep spectral index, possibly another low-luminosity object
 - **J0452-3418**; newest addition, interesting emission phenomenology
 - See Garvit Grover's talk for GMRT+MWA follow-up!

- Re-discoveries:
 - J0026-1955; a GBNCC candidate, initially detected in a grating lobe, sub-pulse drifting
 - See Parul Janagal's poster for GMRT follow-up!
 - J1357-2530; actually detection of mislabeled PSR J1358-2533 with vastly different P and DM!
 - GMRT imaging was required to nail down position and hence update the name

Pulsars we have discovered




Other pulsars we have detected with SMART

We have also **detected many known pulsars** in SMART observations

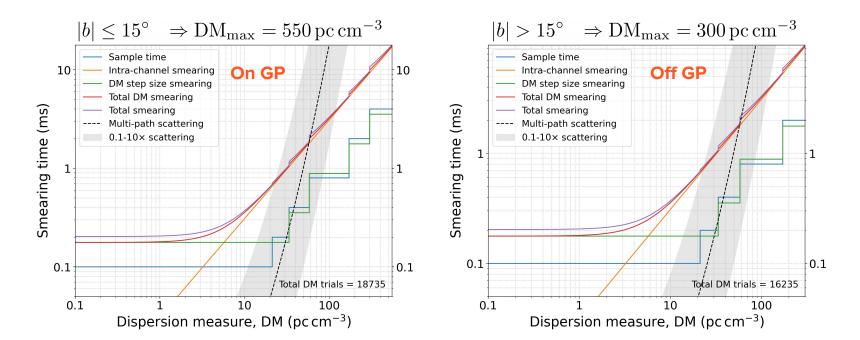
- Pulsars: 170
- Millisecond pulsars: 15*
- Binary pulsars: 15*

Many of these are the **first detections below 300 MHz**!



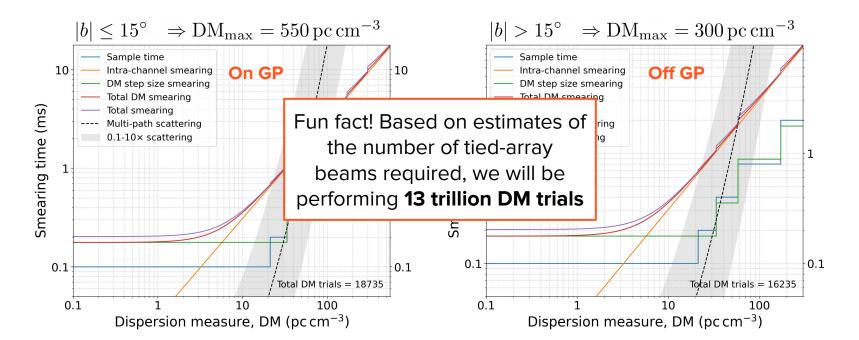
Planning the next stage of SMART processing

Optimising dedispersion plans

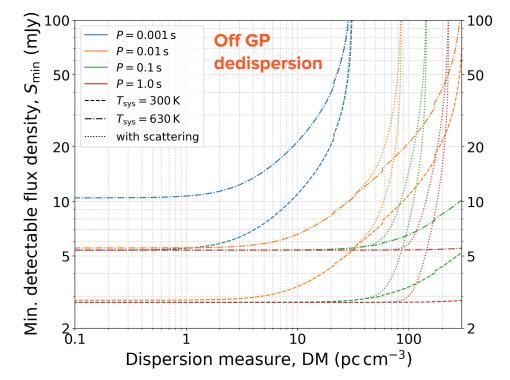

- Must make informed decisions based on instrumental limits
 - **Reduce artificial data degradation** by increasing DM precision
 - **Cost/benefit compromise** in terms of data generation/degradation

Optimising dedispersion plans

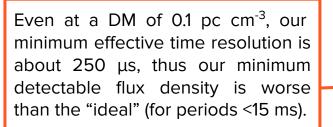
• Use two different plans based on Galactic latitude


• DM rapidly increased towards the Galactic plane

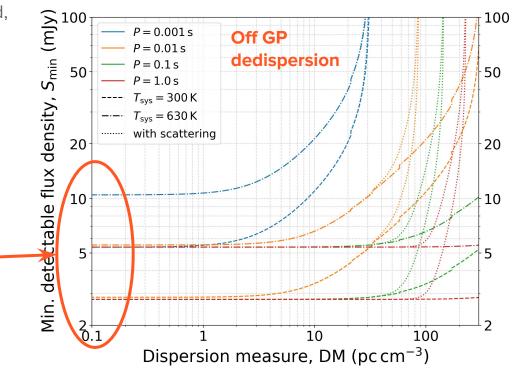
Optimising dedispersion plans


• Use two different plans based on Galactic latitude

• DM rapidly increased towards the Galactic plane


Updating our sensitivity estimates

- The dedispersion plan directly impacts theoretically achievable sensitivity
 - Also depends on pulsar period, pulse duty cycle, dwell time, and the assumed gain and system temperature



Updating our sensitivity estimates

- The dedispersion plan directly impacts theoretically achievable sensitivity
 - Also depends on pulsar period, pulse duty cycle, dwell time, and the assumed gain and system temperature

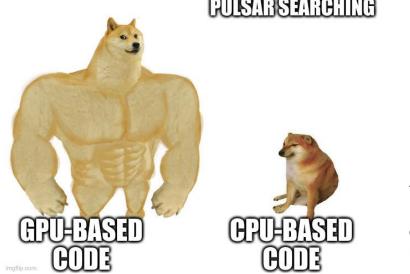
Need semi-coherent dedispersion!

Bringing our database and web-app online

- Database to manage processing stages and outputs
 - Developed through ADACS (special thanks to James Tocknell)
- REST API framework linked to a web application
 - Programmatic interactions possible during Nextflow tasks (and beyond)
 - Website with documentation, survey status and candidate ranking portal
- Currently live, but still ironing out some issues
- Eventual location for SMART data product releases and hosting

https://apps.datacentral.org.au/smart/

How should we actually search for pulsars?


- For our entire *first-pass processing*, we used about **300 kSU***
- For a *naive second-pass*, need about **250 kSU per observation**
 - That's 70 x 250 kSU = 17500 kSU!
 - A very-well graded ASTAC proposal may achieve 500-600 kSU
 - So, SMART would take... 23 years to complete
- Need to make difficult decisions about the scope of "second-pass"
 - Is the proposed dedispersion plan absurd? What about RFI mitigation?
 - Can we afford any acceleration searches? Can we afford single-pulse searches?
 - Do we only process a portion of the sky? Which part? (High-IbI is easier, but fewer pulsars...)

Looking to the future

Accelerating our search software

The searching methods are now our **biggest computational bottleneck**

Just like our beamforming code, moving to **GPU-accelerated techniques** will be critical in the long-run to efficiently search such a large data volume

PULSAR SEARCHING

+ Actually it's also about Intelligent algorithmic design, efficient resource use, etc., etc.

Reprocessing of SMART data

SMART data are voltages, retains *maximum flexibility* for various processing tasks

- Relies on being able to **archive the SMART data** in perpetuity
 - Phase 1 ARDC; 2018-2019 campaigns; allocation of 1081 TB (~40% of sky).
 - Phase 2 ARDC; 2020-2021 campaigns; allocation of 977 TB (~40% of the sky)

https://asvo.mwatelescope.org/collections

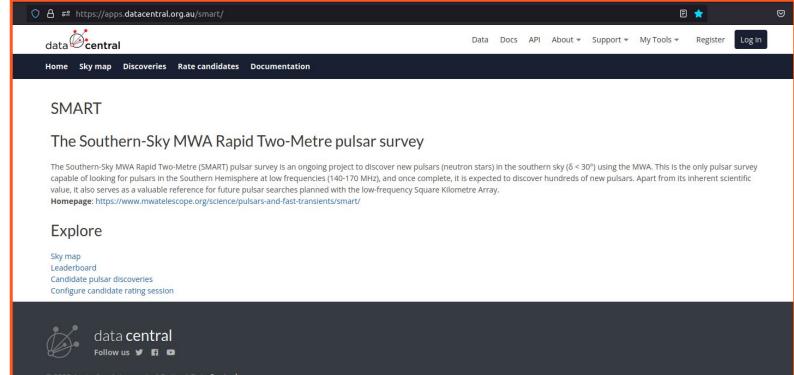
- Historically, pulsar surveys have been processed many times over
 - Motivated by new technologies, algorithmic developments, and/or phenomena
 - FRBs, RRATs, new MSPs and binaries...

• Next generation telescope survey data cannot be kept for any extended time

• Will force creative solutions that will also aid in reprocessing SMART data!

SMART team: R. Bhat, B. Meyers, N. Swainston, S. McSweeney, M. Xue,, M. Sokolowski, S. Dai, S. Kudale, W. van Straten, R. Shannon, S. Tremblay, ...

Completed data collection


- 3.6 PB of VCS observations
- Voltage record of the visible sky
- Critical decisions about next processing steps
 - The reality is we *can't* naively scale
 - Innovation & development required!

• Handful of pulsars already!

- Promising for total survey yield
- On track for >100 pulsars

Additional slides

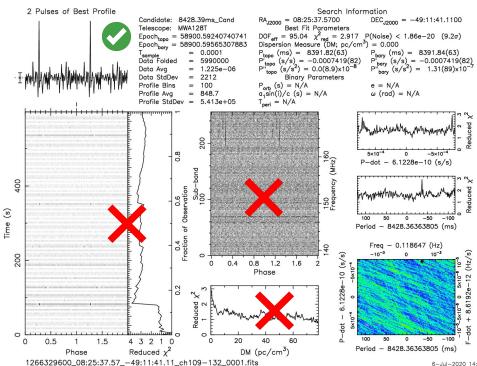
DataCentral database and web-app support

Practicality of search methods

Simulations testing FFT vs. FFA searching for SMART-like data suggests

- FFT searching should be limited to P < 10 seconds
 - Red noise dominates, can mitigate but information fundamentally lost
- FFA searching most effective at P > 1 second
 - Red noise removal in time domain, but still removing potential information
 - Efficiency grows for large P due to re-use of data in-memory

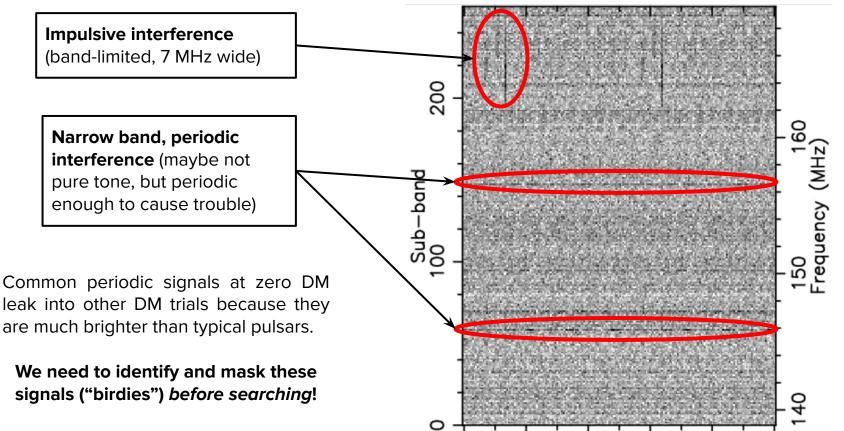
Proposed strategy


- FFT for: **1 ms < P < 2 s**
- FFA for: **1** s < **P** < **120** s

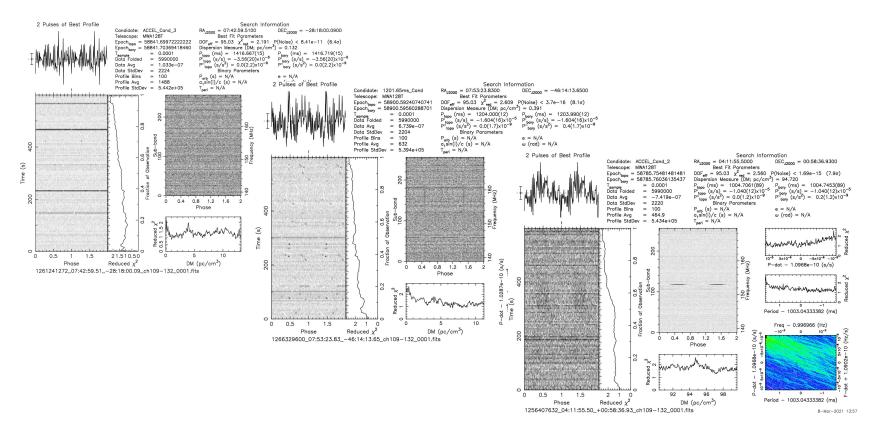
Current state of searching software

- Almost all CPU-based, or GPU-based is developed for higher frequencies
 - A big factor for MWA is the dispersion sweep is enormous which requires equivalently enormous GPU resources to process optimally
 - **AstroAccelerate** (developed for SKA) notionally works on MWA-like data, but performance is drastically reduced due to memory limitations on all but the biggest of GPUs
 - **Peasoup** (Swinburne group) also developed for higher-frequency surveys, probably cannot handle MWA-like data without significant changes (which likely decreases efficiency)
 - **GPU-PRESTO**(?) has been on the table for years, but there is no supported/well-maintained version and no plan towards it in the near-future

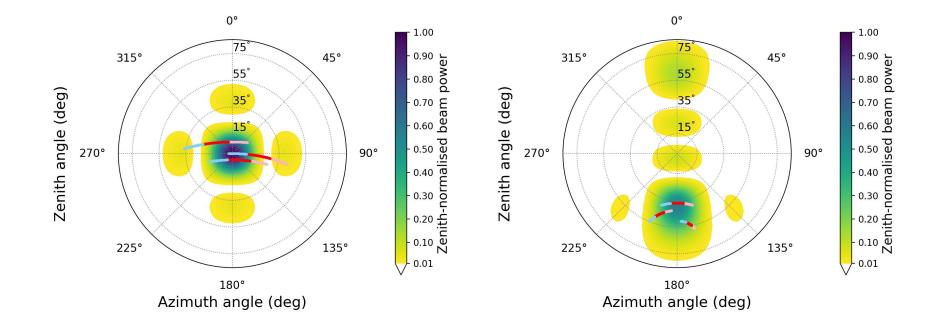
Include RFI mitigation


- Clear examples in shallow pass where RFI causes grief
 - While the observatory site is Ο exquisitely RFI quiet, we still see impulsive and periodic varieties
 - RFI can mimic single pulses and Ο periodic pulsar signals - they are by far the majority of candidates
 - Exploring options of how to deal Ο with these in an effective and computationally feasible way
 - RFI "excision" can happen after candidate creation, too

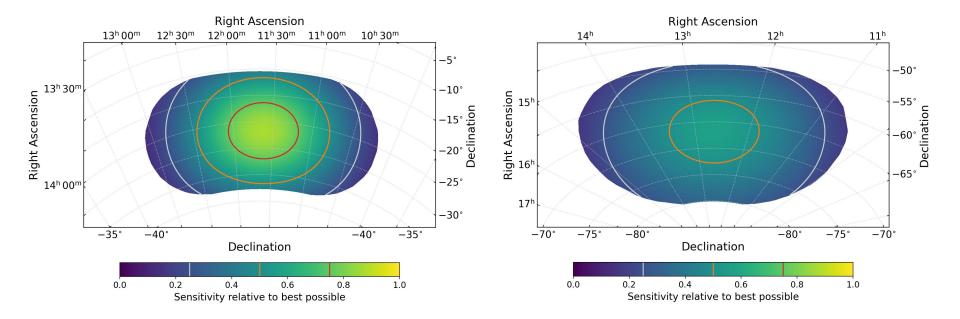
30


6-Jul-2020 14:18

RFI in pulsar data - an example


31

Other RFI examples - the horrifying truth



Consider realities of our observing strategy

- How does a static primary beam combined with a sky-tracking tied-array beam impact sensitivity?
 - SMART is unique among pulsar surveys inform considerations for SKA-Low!
- 1. Computationally inefficient to beamform all sky-positions for full 80 mins
 - Why bother forming tied-array beams when source is in a primary beam null?
- 2. Tracking position for full duration may *decrease* sensitivity
 - Consequence of 1. is that we essentially just add noise to the data when searching
 - But... longer tracks also improve chances of detecting bright single pulses and long-period pulsars
- 3. Sensitivity will be position dependent
 - Primary beam sky positions (Alt/Az) *in addition to* target sky position (RA/Dec) affects sensitivity

Observing near vs. far-from zenith: beam pattern & source traces

Observing near vs. far-from zenith: relative sensitivity