Antenna systems: dipoles/groundscreen & analog beamformer

Brian Corey MIT Haystack Observatory

General specifications

Tunable frequency range

Instantaneous frequency range Collecting area

Field of view

Polarization

System temperature

80-300 MHz

≥ 32 MHz

 ≥ 10 m² over as much of frequency range as possible
 As wide as possible (within constraints of collecting area & physics)
 Dual

Sky noise dominated

2006 September 25

Key design features

- 16 dual-polarization, bowtie antenna elements over a ground screen
- Elements arranged in compact planar array with $\lambda/2$ spacing at 140 MHz (= 1.07 m)
- Low-noise amplification integral to each element
- Analog RF beamformer with PCB tapped delay lines

Block diagram of electronics for one tile

One section of 5 sections of switchable delay line – lengths differ by factors of 2

2006 September 25

Prototype antenna element used in ED tiles

Low-noise amplifier

- Balanced design using two ATF-54143 HEMTs
- Measured noise temperature 14-17 K with 50 ohm loads on inputs, in agreement with simulation
- Measured OIP2 > +63
 dBm, OIP3 = +27 dBm
- With LNA connected to prototype element, simulated noise temperature < ¹/₂ x sky temperature

Simulated receiver noise temperature (antenna-LNA impedance mismatch included)

Receiver noise temperature from ED1 data

2006 September 25

Single element power patterns

Single element: 110 MHz, E-plane

Single element: 200 MHz, E-plane

Single element: 110 MHz, H-plane

Single element: 200 MHz, H-plane

2006 September 25

Single element power patterns (cont'd)

Single element: 300 MHz, E-plane

RF analog beamformer

- 4-channel prototype board constructed using coplanar waveguide in 4-layer PCB with 10-ns max delay
- Isolation > 40 dB between channels and between switched lines within a channel
- Delay reproducible between channels to ~0.1 ns (1σ)
- Gain reproducible between channels to ~0.3 dB (1σ)
- Gain independent of delay selected to <1 dB

Prototype LOFAR HBA beamformer: measured gain and delay for minimum delay

2006 September 25

Prototype LOFAR HBA beamformer: measured gain and delay for maximum delay

2006 September 25

Prototype LOFAR HBA beamformer: measured gain and delay differences, max - min delay

2006 September 25

Simulated antenna tile patterns for beam steered to zenith

Simulated antenna tile patterns for beam steered to zenith (cont'd)

2006 September 25

Measured antenna tile patterns for five steering directions

2006 September 25

Looking ahead toward CDR....

 The primary (& secondary & tertiary &...) challenge is to meet the cost targets.

Item	Quantity per tile	Total cost (\$US)
Dual-polarization antenna element	16	\$500
LNA (using ATF-55143)	32	\$300
LNA \rightarrow beamformer cable	32	\$50
Beamformer boards	2 delay line + 1 digital interface	\$500
Beamformer chassis, power supply & final amps	1	\$100
Groundscreen	1	\$50
Shipping		\$100
Assembly / installation		\$300
Total		\$1900

Antenna/groundscreen issues

- Antenna + groundscreen (+ LNA?) must be redesigned to minimize cost of manufacture, shipping, & installation.
- May support bowties with 5-cm-high dielectric posts between the groundscreen & lower tips of bowties.
- How is the groundscreen supported?
 - Lay it directly on the ground \rightarrow cheap!
 - Support it above ground \rightarrow other advantages.
- Working with two U.S. antenna companies to develop new design.
 - RDI Inc.
 - Seavey Engineering

Beamformer: technical issues

Is the frequency dependence of the BF delay acceptable?

2006 September 25

Beamformer: technical issues (cont'd)

 Should the max delay be increased from 10.6 ns to 13.1 ns, to allow observations with all 16 elements down to 60° ZA for all azimuths?

Beamformer: technical issues (cont'd)

- Can the delay lines be packed closer together, while maintaining acceptable crosstalk, in order to fit all 16 channels and a 16-way combiner on one board?
 - Presently laying out a test PC board with closer packed lines

Monitor/control: functions

- Monitor functions:
 - Beamformer internal temperature
 - Beamformer DC voltage levels?
- Control functions:
 - Set delay line switches and on/off switch for each polarization of each antenna element
 - Set 0°/180° phase shift for each polarization
- Rely on satellite RFI to monitor health of LNAs and BF.
- Deuterium Array experience with similar LNAs:
 - Zero failures in ~2000 HEMTs over ~3 years
 - Only failures were in passive components, e.g., inductors

Monitor/control: implementation

- Use CPLD.
- What communication standard with node? RS-xxx?
- During observations, put logic to sleep, to avoid RFI.
- Walsh function signals must be handled separately.
 - Switching rates < 1 kHz.