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Herein I discuss certain aspects of cascaded Fourier transforms such as those computed
in the coarse and fine polyphase filter boards (PFBs) in the MWA-LFD instrument. Before
the analysis of the PFBs is presented, I first go through the mathematics of cascaded FFTs
without the application of window functions in either stage. Even though this does not
model the MWA data processing fully, it retains the essential points.

The Cascaded Fourier Transform

Data, which may be taken as a stream of real or complex equally-spaced measurements,
are divided into equal-size sets and transformed. This first-stage or coarse transform produces
complex Fourier coefficients for each of a set of equally spaced frequencies. For each of a set
of selected coarse channels the coefficients from the succession of coarse data sets are formed
into a time series, and when the series is complete, a transform is done on them. This is the
second stage or fine transform. In essence, the first stage analyzes the input data stream
into coarse frequency channels and then the second stage transform analyzes each selected
coarse channel into fine frequency channels.

We use index i to sequentially number the n measurements within each time interval over
which the first-stage (coarse) transform operates and index s to number the M first-stage
intervals that go into the second stage (fine) transform. The coarse transform for interval s
results in a complex Fourier coefficient for frequency bin k that may be expressed as

d̃k,s =

n−1
∑

i=0

dsn+ie
jωkti . (1)

Here, ti = i∆t is the elapsed time from the beginning of this coarse interval (interval s) to
measurement i and the angular frequency is ωk = 2πk/(n∆t). The data points are numbered
consecutively starting at zero from the beginning of the first coarse interval. A total of M
complex Fourier coefficients for coarse channel k are collected and transformed in the fine
transform to give the Fourier coefficient for fine channel l according to

D̃kl =

M−1
∑

s=0

d̃k,se
jωltsn (2)

=
M−1
∑

s=0

(

n−1
∑

i=0

dsn+ie
jωkti

)

ejωltsn (3)

=

M−1
∑

s=0

n−1
∑

i=0

dsn+ie
j(ωkti+ωltsn). (4)
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In this expression, tsn = sn∆t is the elapsed time from the beginning of the first coarse
interval to the beginning of coarse interval s and the frequency is ωl = 2πl/(Mn∆t).

It is now useful to compare the above expression for D̃kl with the result that would be
obtained from a Fourier transform of the whole set of N = nM measurements. In the latter
case one obtains

F̃p =

M−1
∑

s=0

n−1
∑

i=0

dsn+ie
jωp(tsn+ti) (5)

where ωp = 2πp/(Mn∆t). One may set p = kM + l, so that ωp = ωk + ωl. Then one finds:

F̃p = F̃kl =
M−1
∑

s=0

n−1
∑

i=0

dsn+ie
j(ωk+ωl)(tsn+ti). (6)

One is free to insert the factor ejωktsn into the expression for D̃kl because this factor equals
unity for any value of k and any value of s since the exponent is an integral multiple of 2πj.
We can therefore express D̃kl as

D̃kl =
M−1
∑

s=0

n−1
∑

i=0

dsn+ie
−jωltiej(ωk+ωl)(tsn+ti). (7)

This differs from the expression for F̃kl by the factor e−jωlti which is a function of time that
depends on l but not on k and is periodic with the period n∆t.

Action on an Exponential Function

One may expand any set of real- or complex-valued measurements obtained from N =
nM equally-spaced times in terms of complex exponentials with the angular frequencies
ω = 2π(kM + l)/(N∆t) (0 < k ≤ n − 1, 0 < l ≤ M − 1). (If the measurements are
real-valued, then one may dispense with the frequencies having n/2 ≤ k ≤ n − 1.) We may
therefore assume that the measured data points can be written as

dsn+i = ae−j(ωk′+ωl′ )(tsn+ti)+φ) (8)

The primes on k′ and l′ distinguish those symbols from the indices of the frequency channels
of the data coming out from the transforms. I now take this expression, omit the constant
factors (a/2) and e−jφ, and insert it into the expression for D̃kl. The result is denoted by a
new symbol:

T̃kl =

M−1
∑

s=0

n−1
∑

i=0

e−j(ωk′+ωl′)(tsn+ti)e−jωltiej(ωk+ωl)(tsn+ti) (9)

=
M−1
∑

s=0

n−1
∑

i=0

ej[(ωk−ωk′+ωl−ωl′)tsn+(ωk−ωk′−ωl′)ti] (10)

=

(

M−1
∑

s=0

ej(ωk−ωk′+ωl−ωl′ )tsn

)(

n−1
∑

i=0

ej(ωk−ωk′−ωl′ )ti

)

(11)
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Consider the first sum on the right side. It is

M−1
∑

s=0

ej(ωk−ωk′+ωl−ωl′)tsn =

M−1
∑

s=0

e2πj[(k−k′)sn/n+(l−l′)s/M ] (12)

=

M−1
∑

s=0

e2πj(l−l′)s/M (13)

where the last equality follows because (k − k′)s is an integer. If l = l′, we then have

S1 =

M−1
∑

s=0

e2πj(l−l′)s/M = M (14)

whereas if l 6= l′, we have

S1 =

M−1
∑

s=0

e2πj(l−l′)s/M = 0. (15)

The second sum on the right side is

n−1
∑

i=0

ej(ωk−ωk′−ωl′)ti =

n−1
∑

i=0

e2πj[(k−k′)/n−l′/(nM)]i (16)

If k = k′ and l′ = 0 then

n−1
∑

i=0

e2πj[(k−k′)/n−l′/(nM)]i = n. (17)

Otherwise, i.e., if l′ 6= 0 or k 6= k′, then

S2 =

n−1
∑

i=0

e2πj[(k−k′)/n−l′/(nM)]i (18)

=
1 − e2πj[(k−k′)/n−l′/(nM)]n

1 − e2πj[(k−k′)/n−l′/(nM)]
(19)

=
1 − e2πj[(k−k′)−l′/M ]

1 − e2πj[(k−k′)/n−l′/(nM)]
(20)

=
1 − e−2πjl′/M

1 − e2πj[(k−k′)/n−l′/(nM)]
(21)

= −eπj(n−1)[(k−k′)/n−l′/(nM)] sin πl′/M

sin π[(k − k′)/n − l′/(nM)]
. (22)
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In the case that l′ 6= 0 but k = k′, then

S2 = e−πj(n−1)l′/(nM)] sin πl′/M

sin πl′/(nM)
. (23)

Aliases

The above analysis shows that the only signatures of a sinusoidal signal with a frequency
ω = 2π(k′M + l′)/(N∆t) appear in the fine frequency channels of index l = l′ of one or
more coarse frequency channels. If l′ = 0, the signature of the signal appears only in coarse
channel k = k′ and fine channel l = l′. If l′ 6= 0 the strongest signature appears in coarse
channel k = k′ while weaker signatures appear in other coarse channels with k 6= k′. The
ratio of the absolute values of the Fourier amplitudes is

Ampl(k 6= k′)

Ampl(k = k′)
=

sin πl′/(nM)

sin π((k − k′)/n − l′/(nM))
(24)

The strength of the aliases depends on the value of l′ and is maximum for the highest absolute
values of l′, i.e., l′ = ±M/2 (to be exact, the fine transform results will be interpreted in
terms of −M/2 + 1 ≤ l′ ≤ M/2).

Analysis of Cascaded Digital Polyphase Filter Banks

The case of cascaded polyphase filter banks (PFB’s) is analyzed below in a manner
similar to that of cascaded straight FFT’s presented above. The essential difference from
the straight FFT case is the use of window functions. The first stage PFB produces Fourier
amplitudes which may be expressed as

d̃k,s =

NT1−1
∑

r=0

n−1
∑

i=0

W1,rn+idsn+rn+ie
jωkti (25)

where W1,rn+i is the value of the window function in time bin rn + i and NT1 is the number
of taps in this PFB. The double summation can be expressed as a single sum over the index
u = rn + i:

d̃k,s =

nNT1−1
∑

u=0

W1,udsn+ue
jωktu . (26)

The substitution of tu = u∆t for ti (or vice versa) is valid here because ωk(tu − ti) is an
integral multiple of 2π. The second stage PFB takes series of these complex amplitudes for
each value of k and computes the transform according to:

D̃k,l =

NT2−1
∑

b=0

M−1
∑

s=0

W2,bM+sd̃k,bM+se
jωltsn . (27)

4



Again, the double summation can be expressed as a single sum, in this instance over the
index v = bM + s:

D̃k,l =

MNT2−1
∑

v=0

W2,vd̃k,ve
jωltvn (28)

where, as above, the substitution of tvn in place of tsn (or vice versa) is completely valid.
This may be expanded to obtain

D̃k,l =
∑

v

∑

u

W2,vW1,udvn+ue
j(ωktu+ωltvn). (29)

Now, we take the input time series to be a complex exponential, i.e.,

dvn+u = e−j(ωk′+ωl′)tvn+u (30)

where, as above, ωk′ = 2πk′/(n∆t) and ωl′ = 2πl′/(Mn∆t). After this is substituted into
the expression for D̃k,l and the result is simplified and factored, one obtains

D̃k,l =

[

∑

u

W1,ue
2πj[(k−k′)/n−l′/(Mn)]u

][

∑

v

W2,ve
2πj[(l−l′)/M−k′]v

]

(31)

The first factor on the right hand side is complicated to analyze while the analysis of the
second factor is straightforward. The window functions that, to my present knowledge, are
used in the 32T MWA-LFD system are shown in Figures 1 and 2. To proceed with the
analysis of the second factor, the single sum over v is converted back to a double sum per
the original expressions for D̃k,l. Then we have

Sv = =
∑

v

W2,ve
2πj[(l−l′)/M−k′]v (32)

=

NT2−1
∑

b=0

M−1
∑

s=0

W2,bM+se
2πj[(l−l′)/M−k′](bM+s) (33)

=
∑

s

(

∑

b

W2,bM+s

)

e2πj[(l−l′)/M−k′]s (34)

The sum in parentheses in the last expression is, for the MWA fine PFB window function,
approximately a constant function of s (see Figure 3). Then the sum is very small except
when l = l′, i.e., when the fine channel numbers are identical. This applies even when the
signal is centered in a different coarse channel. This is illustrated in Figure 4 by the results
of a simulation of the action of the MWA-LFD 32T PFBs. The simulations are computed
in double precision and do not yet comprehensively model the limited numbers of bits used
for the representations of various quantities in the MWA firmware. However, the window
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Figure 1: Window function intended for use in the MWA coarse PFB as defined in the
file “MwaPfbProtoFilterCoeff2009 512x8.dat”. The vertical lines distinguish the intervals
corresponding to the 8 taps that are stacked before the FFT is computed.
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Figure 2: Window function used in the MWA fine PFB. The vertical lines show the intervals
corresponding to the 12 taps that are stacked before the FFT is computed.
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function shown in Fig. 1 consists of integer values in the range -2047 to 2047. I have found
that this limited precision results in additional small alias responses, such as the “secondary”
peaks apparent in the two panels on the right in Fig. 4.

The overall power response of the fine channels within a coarse channel is shown in
Figure 5 for two possible coarse PFB window functions. The solid curve shows the response
computed using the window function shown in Fig. 1. The dashed curve shows the response
computed using a slightly narrower window function, i.e., a window function that gives a
half-power width closer to 1.28 MHz. Additional discussion of these simulations will be
presented in a separate document.

Figure 3: Window function used in the MWA fine PFB after stacking. Note the range of
values on the vertical axis.
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Figure 4: Results from a set of simulations of the MWA-LFD 32T PFBs. Each simulation
assumes pure sinusoidal input; the frequencies are different in the different simuation cases.
The plots show the power levels in the fine channels for a given coarse PFB channel (no. 197)
regardless of the input frequency. The convention used here has the center frequency of a
coarse channel at fine channel 63. The input frequencies are, relative to the center frequency
of channel 197, are 0 MHz (top left), 2.56 MHz (bottom left), 0.30 MHz (top right), 2.86
MHZ (bottom right). Note that there are 128 fine channels that equally divide the 1.28 MHz
coarse channel.
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Figure 5: Power as a function of input frequency (shown here in terms of coarse channel
number) as computed in the MWA-LFD 32T simulations. One coarse channel has a width
of 1.28 MHz. There are 128 fine channels per coarse channel. The solid and dashed curves
show the system response for two particular window functions. See the text for details.
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