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We review a two-element interferometer without resorting to quasi-monochromatic assumption so as not to restrict

ourselves to coherence time >> signal delay [1, 4]. The motivation is to understand the behavior of cable ripple seen by

the interferometer [2, 3] and how to best measure and quantify that for engineering. We also seek to understand the

interplay between cable ripple and low-order polynomial fitting employed in calibration.

Cable_ripple_interferometer_Rev1_18jul2016 http://localhost:8888/nbconvert/html/Python_scripts/Jupyter_files/Inter...

1 of 14 2/08/2016 3:12 PM

254283a
Information Only
Work in Progress
16 Aug. 2016, Adrian Sutinjo



Response of a two-element interferometer

Fig. 1. A two element interferometer.  and  are the frequency responses of the long transmission lines. The

frequency response of the electronic chains may be lumped into these parameters.  is the frequency response of the

bandpass filter (identical in 1 and 2).  signifies fourier transformation.

The basis for treatment is found in random process/statistical communication theory textbooks [4, 5]. The treatment in

radio astronomy context is given in [1]. It can be shown that the key equations are [6]:

The output of the cross-correlator (Fig. 1):

where  is the cross-spectral density of the voltages present at the output of the antennas (or

more precisely, present at the inputs of  and ). Note that the time-domain voltages are represented as the

positive complex pre-envelope [5] or complex wavefunction [4] such that the  is non-zero for positive

frequencies only.

The auto-correlation

similarly for chain #2.

Cable_ripple_interferometer_Rev1_18jul2016 http://localhost:8888/nbconvert/html/Python_scripts/Jupyter_files/Inter...

2 of 14 2/08/2016 3:12 PM



Special cases:

Single-source radiation

Consider a special case of a single source at direction . For a 1-D sky, we obtain

where  is the space delay and  is the power spectral density of the source at

.

Uncorrelated sources from multiple directions

If we assume the interferometer is illuminated by uncorrelated sources from multiple (discrete) directions, the right-

hand-side of Eq. (3) becomes

In the limit of continuous distribution of sources ( ) and continuous sampling on the ground ( ), Eq.(3b)

becomes a fourier transform [1].

Connection to Electrical Engineering

Eq. (1, 2) above are quite instructive. They tell us that the output of the correlator is directly related to the frequency

responses of the cascaded stages. This is good, because

Frequency-domain analyses and formulas for tranmission lines (TL) [7, 8] are useable here.

The transfer function of a long cable is measurable with a frequency swept device such as a vector network

analyzer (VNA), bearing in mind that the output frequency lags the input frequency by

where  is the sweep rate and  is the cable delay; the sweep rate must be such that resolution

(or IF) bandwidth of the VNA. For a 150m RG6 cable with velocity factor of 0.66c and 0.76  delay, the sweep

rate should be << 13GHz/s for a 10kHz IF bandwidth (BW)

Cable_ripple_interferometer_Rev1_18jul2016 http://localhost:8888/nbconvert/html/Python_scripts/Jupyter_files/Inter...

3 of 14 2/08/2016 3:12 PM



Fig. 2. A lossy transmission line (TL).

The point of this exercise is to deal with concerns regarding long cable ripples. These ripples are due to partial standing

waves in the transmission line (Fig. 2) described in [7, 8]

where  is the complex propagation constant,  and  are the load and source

reflection coefficients, respectively.

We are interested in the transfer function  of the TL which relates the output to input voltages. The voltage at the load

is

The voltage at the input is

Now, the question is: which do we call ?  or ? Furthermore, what is the physical

meaning of ? Consider an idealized diagram representing the antenna, low-noise amplifier (LNA) and the TL in Fig. 3.

We assume that the LNA is an ideal buffer amplifier. The desired ratio is ; hence,

where  is the LNA output impedance. The strongest frequency dependence in Eq. (8) is  in

, where  is the phase velocity in the TL.

Fig. 3. Antenna connected to an idealized LNA and TL.  is the antenna impedance in transmit mode and  is the

antenna open circuit voltage in receive mode.

The model in Fig. 3 may be refined to include the ratio between  and  due to realistic LNA input impedance

which will introduce an additional transfer function. Alternatively, this affect may be accounted by calculating antenna

response including the LNA input impedance. We will not pursue that level of detail here, however.

This concludes our review. We will now move to computer simulation.
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In [1]: # Define functions to calculate cable transfer function
#IMPORTANT: my Kernel is Python 3.5
%matplotlib notebook
#%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

#housekeeping 
eps=np.finfo(float).eps #floating resolution

TL_c=299792458 # velocity of light in vacuum

#dB conversion-------------------------------

def V_to_dB(Vratio): #convert voltage ratio to dB
return 20*np.log10(abs(Vratio+eps))

def P_to_dB(Pratio): #convert power ratio to dB
return 10*np.log10(abs(Pratio+eps))

#---------------------------------------------

def TL_gamma(Zl,Zo):
"""

    voltage reflection coefficient. 
    Zl: load impedance (cplx, Ohms)
    Zo: TL characteristic impedance (generally real, Ohms)
    """

return (Zl-Zo)/(Zl+Zo)

print(V_to_dB(TL_gamma(73,75)))

In [2]: def TL_beta(vp,f):
"""

    function to calculate phase constant \beta at frequency f (real)
    at a given phase velocity vp (real) 
    """

return 2*np.pi*f/vp

def TL_Npm(dB_loss,TL_length_m): #convert dB loss in x m to alpha in Np/m
return dB_loss/(20*TL_length_m*np.log10(np.exp(1)))

print(TL_beta(TL_c*0.6,np.linspace(100e6,120e6,10)))
print(TL_Npm(1,1))

In [3]: def TL_transfer(Zo,Zs,Zl,alp,bet,l):
"""

    Tl transfer function per Eq. (8)
    Zs: source impedance (cplx, Ohms)
    alp: attenuation constant
    bet: phase constant
    l: physical length of the TL in m
    """

GamL=TL_gamma(Zl,Zo)
GamS=TL_gamma(Zs,Zo)
g=alp+bet*1j #propagation constant
return (Zo/(Zo+Zs))*np.exp(-g*l)*(1+GamL)/(1-GamS*GamL*np.exp(-2*g*l)) 

Example 1: Cable Ripple

-37.3846343946

[ 3.49307504  3.57069893  3.64832282  3.72594671  3.8035706   3.88119449
  3.95881837  4.03644226  4.11406615  4.19169004]
0.11512925465
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In [4]: #Example 1: RG6 cable ripple
Zo=75
Zl=73 #hypothetically well matched load
Zs=77 # and source
TL_len=150
eps_r=2.2 #relative permittivity of Polyethylene
freq=np.linspace(140,150,2000)*1e6 #frequency
bet=TL_beta(TL_c/(eps_r)**0.5,freq)
alp=TL_Npm(10,100) #10 dB loss per 100 m, approx. for RG 6 at couple hundred MHz

print("Gamma_L (dB)=","%.2f" %float(V_to_dB(TL_gamma(Zl,Zo))))
print("Gamma_S (dB)=","%.2f" %float(V_to_dB(TL_gamma(Zs,Zo))))

T_test=TL_transfer(Zo,Zs,Zl,alp,bet,TL_len)

delta_BM=1e-5; #Barry-Morales limit as per [2]
plt.figure(1)
line_power, = plt.plot(freq/1e6,abs(T_test)**2/np.mean(abs(T_test))**2, label='p
ower')
line_voltage, = plt.plot(freq/1e6,abs(T_test)/np.mean(abs(T_test)), label='abs. 
voltage')
plt.plot(freq/1e6,1+delta_BM*np.ones(np.size(freq)),'k--')
plt.plot(freq/1e6,1-delta_BM*np.ones(np.size(freq)),'k--')
plt.legend(handles=[line_power, line_voltage],loc=3)
plt.xlabel('MHz')
plt.ylabel('linear power or voltage ratio')

Gamma_L (dB)= -37.38
Gamma_S (dB)= -37.62

Out[4]: <matplotlib.text.Text at 0x74bfb70>

Cable_ripple_interferometer_Rev1_18jul2016 http://localhost:8888/nbconvert/html/Python_scripts/Jupyter_files/Inter...

6 of 14 2/08/2016 3:12 PM



Analyzing the ripple for frequency-independent  and 

In Example 1 above, we made  and  frequency independent and only  frequency dependent which applies in

practice assuming  is the dominant cause for ripple. For this special case, the shape of the cable response is fully

described by:

The geometric series expansion [7] is possible since for physical reflections . Note that arbitrary cable

ripples may be modeled with a single sinusoidal function in the denominator of Eq. (9).

In the special case of small reflections, i.e., ,

such that

where  and . The equation above suggests that for small reflections:

We can fit the cable ripple with a single sinusoid  for both voltage and power quantities

The cable ripple "period" in frequency is given by , where  is the one-way cable delay.

Preventing ripples with periods shorter than 8 MHz [2] translates to keeping  ns which for an RG6

cable is less than 12.4 m!

The ripple in  is twice as much as in  as expected from .

Taking the  in [2] as the ripple limit ( ) for  suggests , or in dB:

For a 150 m long RG6 cable at  150 MHz, the cable loss is 15 dB. The requirement above may be met with 35 dB return

losses at the source and load, which is more stringent than the typical 20-30 dB return loss offered by COTS amplifier

amplifier (http://pdf1.alldatasheet.com/datasheet-pdf/view/174714/SIRENZA/CGB-1089Z.html) or high-precision cable

(https://www.belden.com/docs/upload/NP233.pdf). RF isolators (https://raditek.com/IC_COAXIAL/25-299/100-199MHz

/RADCorI-117-175M-S_N_-200WR-Generic-b.pdf) offer 20 dB return loss which is not helpful.

How about fiber optics?

Assuming an intensity modulated RF-over-Fiber (RFoF) link [10], the optical power ripple is commensurate to the RF

amplitude voltage ripple seen by the link. As suggested by Eq. (11), the ripple is  such that

For a single mode fiber at 1310 nm, the optical loss is typically ~0.5 dB/km (http://www.thefoa.org/tech/loss-est.htm).

Connecting an optical isolator (https://www.thorlabs.com/thorcat/17200/IO-H-1310APC-AutoCADPDF.pdf) rated for 29 dB

minimum isolation and >50 dB return loss to a well-matched (return loss > 24 dB) RFoF transmitter and receiver link may

do the job (2x(29+24) = 106 dB).

Summary of uncalibrated cable response

Achieving  cable ripple with an uncalibrated system:

cannot be consistently expected with RF cables. It may work with very lossy cables, but this is not desirable.

appears feasible in fiber optics by employing optical isolators and well-matched RFoF links, but further

verification is needed such as including the effect of splices and/or connectors (http://www.thefoa.org/tech/ref

/testing/test/reflectance.html) etc.

Next, we consideration calibration with low-order polynomial fitting.
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We now look at applying the Trott-Wayth (TW) low-order polynomial fitting as discussed in [3]. We assume a time-invariant

system for now. This allows us to perform deterministic polynomial expansion. Obviously, when working with a real signal

we will need to use a least-squares approach.

For small ripples, we use Eq. (11)

Let  where  is a nominal center frequency. Using Maclaurin series expansion

Using a 3rd-order polynomial fitting, we are left with a residue

Following [3], we calculate the residue of a 3rd order polynomial approximation at the edges of a coarse channel

(  kHz/ch.). Let  and  be the midpoint of the central coarse channel. Eq. (15) suggests that the

maximum residue occurs at the band edges at  MHz.

TW Limit: Example 2

Example 2 below calculates the exact band-edge residue as a function of cable delay for 3rd order polynomial

approximation of cable ripple for a lossless cable with 20 dB source and load return loss ( , consistent with

"good" RF match). The residue is compared to the  TW limit suggested in [3].
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In [5]: def TL_fit3(delf_max,tau_c):
#approximate residue in ripple fitting using 3rd-order polynomial as a funct

ion of one-way cable delay
#del_f: maximum delta freq from center (MHz)
#tau_c: one-way cable delay (microseconds)
z=2*np.pi*delf_max*2*tau_c
fit3=1-z**2/2+1j*(-z+z**3/6) #3rd order fit
res=np.exp(-1j*z)-fit3 #exact residue
return (fit3,res)

#Example 2: residue at coarse channel band edge as a function of cable delay
delf_max=0.769*0.5 #in MHz
tau_c=np.linspace(0,0.4,100) #in microseconds
Gl_Gs=0.1*0.1#|Gamma_l||Gamma_s|: 20 dB load and source return loss, 0 dB cable 
loss
fit_res=TL_fit3(delf_max,tau_c) #[0] is fit, [1] is res
del_res=fit_res[1]*Gl_Gs #delta*residue

print('Delta=',"%e" % float(Gl_Gs))

plt.figure(2)
#plot residue
line_real_res,=plt.plot(tau_c*1e3,np.real(del_res),'ro',label=r're($\Delta$*Res)
')
line_imag_res,=plt.plot(tau_c*1e3,np.imag(del_res),'b.',label=r'im($\Delta$*Res)
')
line_abs_res,=plt.plot(tau_c*1e3,abs(del_res),'k-',label=r'|$\Delta$*Res|')

delta_TW=0.005 #most stringent Trott-Wayth limit
line_lim_res,=plt.plot(tau_c*1e3,delta_TW*np.ones(np.size(tau_c)),'k--',linewidt
h=2,label='TW limit')
plt.plot(tau_c*1e3,-delta_TW*np.ones(np.size(tau_c)),'k--',linewidth=2)

plt.xlabel('ns')
plt.ylabel(r'$|\Delta|$*Res')
plt.grid()
plt.legend(handles=[line_real_res, line_imag_res,line_abs_res,line_lim_res],loc=
3)
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Remarks and design implications of TW limit:

Reasonably well-matched lossless cables (20 dB source and load return loss) up to  ns may be calibrated

(modelled) with a 3rd order polynomial fit

Assuming optical index of 1.467 (single mode fiber, SMF (http://ece466.groups.et.byu.net/notes/smf28.pdf)), this

delay translates to  m.

Longer cables (or uncalibrated cables) must meet Eq. (12, 13), adapted to the TW limit of :

Taking Eq. (17) and assuming a lossless cable suggests 36 dB source and and load reflection coefficient (max.) which

seems to be near the limit of what is achieveable without optical isolator (TBC).

BM Limit: Example 3

Example 3 below calculates the exact band-edge residue as a function of cable delay for 3rd order polynomial

approximation of cable ripple for a lossless cable with 20 dB source and load return loss. The residue is compared to the

 BM limit suggested in [3].

Delta= 1.000000e-02

Out[5]: <matplotlib.legend.Legend at 0x76c0fd0>
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In [6]: #Example 3: residue at coarse channel band edge as a function of cable delay
#initialize
tau_c=[]
fit_res=[]
del_res=[]
#recalculate
tau_c=np.linspace(0,0.1,100) #in microseconds
fit_res=TL_fit3(delf_max,tau_c) #[0] is fit, [1] is res
del_res=fit_res[1]*Gl_Gs #delta*residue

print('Delta=',"%e" % float(Gl_Gs))

plt.figure(3)
#plot residue
line_real_res,=plt.plot(tau_c*1e3,np.real(del_res),'ro',label=r're($\Delta$*Res)
')
line_imag_res,=plt.plot(tau_c*1e3,np.imag(del_res),'b.',label=r'im($\Delta$*Res)
')
line_abs_res,=plt.plot(tau_c*1e3,abs(del_res),'k-',label=r'|$\Delta$*Res|')

line_lim_res,=plt.plot(tau_c*1e3,delta_BM*np.ones(np.size(tau_c)),'b--',linewidt
h=2,label='BM limit')
plt.plot(tau_c*1e3,-delta_BM*np.ones(np.size(tau_c)),'b--',linewidth=2)

plt.xlabel('ns')
plt.ylabel(r'$|\Delta|$*Res')
plt.grid()
plt.legend(handles=[line_real_res, line_imag_res,line_abs_res,line_lim_res],loc=
3)

Delta= 1.000000e-02

Out[6]: <matplotlib.legend.Legend at 0x7726f98>
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Remarks on the BM limit:

Reasonably well-matched lossless cables (20 dB source and load return loss) up to  ns may be calibrated

(modelled) with a 3rd order polynomial fit. This is consistent with the 62.5 ns cable delay resulting in 8 MHz ripple

period [2]; in fact the 0.5*BM limit line intersects the real part of the residue at 68 ns in Fig. 3.

TW vs. BM Limit Summary

Eq. (12,13) and (16,17) are useful in link design as per BM and TW limits, respectively.

Assuming a lossless cable, the TW limit calls for very-well matched source and load while BM requires extremely

well-matched source and load.

The TW limit may be achievable without optical isolators with great care in the design. Meeting the BM limit

generally requires optical isolators.

Let  be an ideal ("brickwall") bandpass filter centered at  with bandwidth  and . For a single source

illumination (from ), the output the correlator is given by

Again, assuming the frequency dependence in  is dominated by ,

where  and  are assumed independent of frequency. Further, again assuming

small reflections, we obtain

Hence, the output of a two-element correlator with a long cable and small reflections illuminated by a single source is

To clarify the effect of cable ripple alone, consider a special case with flat source spectrum, =constant, and

. Let , we get

Hence, for , the ripple  is fully seen at the output of the correlator as a function of center

frequency . However, as  becomes larger, less ripple is produced at the output of the correlator as per

.

This is relevant for engineering as demonstrated in Example 4 below. Again, taking  commensurate to 20 dB

source and load return loss and a lossless cable:

The ripple is less than TW limit for . For  km such that the maximum  and

B=4.56 kHz [3] ( ), this translates to cable delay of  or 9.5 km for a SMF. Since

this distance is significantly farther than 3 km, it is of limited practical benefit.

The ripple is less than BM limit for , which definitely will not provide practical

benefit.
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In [7]: #Example 4: correlator output at tau=0 for a single source with flat spectrum an
d T_{1}=1
Bt=np.linspace(0,2,100) #BW*tau_c

print('Delta=',"%e" % float(Gl_Gs))

plt.figure(4)
line_sinc,=plt.plot(Bt,Gl_Gs*np.sinc(Bt))
#TW limit
line_lim_res_TW,=plt.plot(Bt,delta_TW*np.ones(np.size(Bt)),'k--',linewidth=2,lab
el='TW limit')
plt.plot(Bt,-delta_TW*np.ones(np.size(Bt)),'k--',linewidth=2)
#BM limit
line_lim_res_BM,=plt.plot(Bt,delta_BM*np.ones(np.size(Bt)),'b--',linewidth=2,lab
el='BM limit')
plt.plot(Bt,-delta_BM*np.ones(np.size(Bt)),'b--',linewidth=2)
plt.grid()
plt.xlabel(r'B$(3\tau_c-\tau_s)$')
plt.ylabel(r'$|\Delta|\mathrm{sinc}(B(3\tau_c-\tau_s))$')
plt.legend(handles=[line_lim_res_TW,line_lim_res_BM],loc=3)

BM ripple limit of  suggests that cables with delays of 62.5 ns or greater must not exceed the limit.

TW ripple limit of  suggests that cables with delays of 390 ns or greater must not exceed the limit.

For baselines of up to a few kms and fine channel of a few kHz, we cannot rely on the fine channel filtering and

correlation to "smooth-out" the ripple down to the limit.

The TW limit may be achievable without optical isolators with great care in the design. Meeting the BM limit

generally requires optical isolators.

Delta= 1.000000e-02

Out[7]: <matplotlib.legend.Legend at 0x7795ef0>
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Collect measured data with RFoF link. Apply low-order polynomial fitting and compute the residue. Practice this

in the lab, then repeat at the MRO (Budi, Adrian, student).

Determine test equipment (VNA/ENA) settings appropriate to measure the low-level ripples, taking into account

consideration from correlation's perspective (Budi, Adrian, student).

Verify the ripple formulas and calculations for RFoF link (Budi, Adrian, student)

Suggestions?

Thanks to M. Morales, N. Barry, R. Webster, C. Trott, B. Juswardy, R. Wayth, B. Smolders for discussions on this topic
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